
1

 Analyzing and Extending MUMCUT for Fault-based Testing of

General Boolean Expressions

Chang-ai Sun
1
, Yunwei Dong

2
, R. Lai

3
, K.Y. Sim

4
, T.Y. Chen

5

1,2,5 Faculty of Information and Communication Technologies,
Swinburne University of Technology, Victoria 3122, Australia
3Department of Computer Science and Computer Engineering,

La Trobe University, Victoria 3086, Australia
4 School of Engineering, Swinburne University of Technology, Kuching, Sarawak, Malaysia

Abstract

Boolean expressions are widely used to model
decisions or conditions of a specification or source
program. The MUMCUT, which is designed to detect
seven common faults where Boolean expressions under
test are assumed to be in Irredundant Disjunctive
Normal Form (IDNF), is an efficient fault-based test
case selection strategy in terms of the fault-detection
capacity and the size of selected test suite. Following
up our previous work that reported the fault-detection
capacity of the MUMCUT when it is applied to general
form Boolean expressions, in this paper we present the
characteristic of the types of single faults committed in
general Boolean expressions that a MUMCUT test
suite fails to detect, analyze the certainty why a
MUMCUT test suite fails to detect these types of
undetected faults, and provide some extensions to
enhance the detection capacity of the MUMCUT for
these types of undetected faults.

1. Introduction

Boolean expressions are widely used to model or

specify decisions and conditions in a specification or

source program. When a decision or condition in a

specification or program source is incorrectly

implemented, its execution may result in a faulty

output. Given a Boolean expression in some restricted

form, such as Irredundant Disjunctive Normal Form
(IDNF) [1][10], it is possible to enumerate some

typical faults that may be introduced during the

programming process.

Several fault-based testing strategies have been

developed to detect some typical faults of Boolean

expressions in some restricted form [1] [9] [10]. For

example, Tai et al.[9] proposed a Boolean operator

(BOR) test case generation strategy for singular
Boolean expressions where each variable can occur

once. Weyuker et al. [10] proposed a family of

meaningful impact strategies (MI) for testing Boolean

expressions in IDNF. Chen et al.[1] proposed a set of

more efficient test case generation strategies

(MUMCUT) for Boolean expressions in IDNF. All

these fault-based strategies only select a subset of an

exhaustive test set and in the meantime have a high

fault-detection capability, thus they can save the cost

of software testing when they are employed in practice.

For example, the MIN strategy uses on average 5.8%

of the size of an exhaustive test set while achieves

from a low average mutation score of 97.9 to a high

average mutation score of 99.7 [10]. The experiments

show that compared with the MIN strategy, MUMCUT

may achieve higher fault detection capability while

using smaller size of test cases [11].

However, Boolean expressions in a realistic

program or specification are often not in some

restricted forms, say IDNF or DNF. This means that

during a designer or programmer implements Boolean

expressions, faults are introduced in the context of

general form. A single fault in a general form Boolean

expression may give rise to more than one fault in the

corresponding equivalent restricted form. Since both

the meaningful impact strategies [10] and the

MUMCUT [1] are evaluated using relevant “simple

faults” operator to obtain the mutation of Boolean

expressions under test, it is interesting to evaluate or

enhance IDNF-oriented fault-based testing strategies to

detect faults in general form Boolean expressions.

We have reported in our previous experiments

that the MUMCUT did very well when it was applied

to general Boolean expressions [2] [8]. In this paper,

we present the characteristic of undetected faults and

their certainty of being detected by the MUMCUT, and

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

2

provide some extensions to the MUMCUT to enhance

its fault detection capacity for general form Boolean

expressions.

2. Notation and Terminology

In this section, we introduce some basic concepts and

notation related to the MUMCUT and the empirical

study later in the paper.

2.1 Boolean expressions and their test data

Boolean values will be written as T and F or 1 and 0.

Boolean expressions are built from Boolean values,

variables, the unary operator NOT, and binary

operators AND, OR, XOR, = and !=. The parentheses

are used to change the precedence of operators or

association of Boolean variables. Given a Boolean

expression, it may be represented in several forms. A

Boolean expression in Disjunctive Normal Form (DNF)

is said to be in Irredundant DNF (IDNF) when none of

the Boolean's literals or terms can be deleted without

altering the Boolean expression's value for some inputs

[1] [10].

For a Boolean expression with m Boolean

variables, a m-dimensional Boolean vector where each

Boolean variable is assigned to a Boolean value is

called a test case t. Furthermore, for a Boolean

expression B in IDNF that can be written as

nTTTB +++= ...21

where iT (i=1,…,n) is a term of B, then we can

classify the input domain into the following disjoint set

of points:

TP (True Point) ={t | B(t)=T} ,

FP (False Point) ={t | B(t)=F},

UTP (Unique True Point) =
n

i
iTP

1=
,

)})((()(|{ FtjTijjTtiTtiTP =∧≠∀∧== ,

OTP (Overlapping True Point)= TP\UTP,

NFP (Near False Point)=
n

i

m

j
jiFP

1 1
,

= =
, where

}))(,/,(|{, TtjitjitiFPiFPttjiFP =∧∈= , and

})(|{ FtiTtiFP == ,

 RFP (Remain False Point) = FP\NFP.

2.2 Fault types

Various faults related to Boolean expressions

have been reported in literature [4][5][6][9][10]. The

terminologies within this paper will follow those

discussed in [2][6]. In this study, we investigate ten

types of faults in general form Boolean expressions,

including Expression Negation Fault (ENF), Term

Negation Fault (TNF), Term Omission Fault (TOF),

Literal Negation Fault (LNF), Literal Omission Fault

(LOF), Literal Insert Fault (LIF), Literal Reference

Fault (LRF), Operator Reference Fault (ORF),

Parenthesis Omission Fault (POF) and Parenthesis

Insertion Fault (PIF).

2.3 MUMCUT

Fault-based testing in nature is intended to detect

some special types of faults using a subset of the

exhaustive test set. A fault-based test case generation

strategy focuses on where and how to select the

meaningful points. The MUMCUT [1] is designed to

detect eight types of single fault in Boolean

expressions that are assumed to be in IDNF. The

MUMCUT is the integration of MUTP, CUTPNFP and

NFP. The MUMCUT only selects some UTP and NFP

to form a test suite. The MUMCUT can greatly reduce

the size of the resulting test suite because UTP and

NFP are a part of an exhaustive set, and in the

meantime a MUMCUT test suite can guarantee to

detect single faults including ENF, TNF, TOF, LNF,

LOF, LIF, LRF and ORF.

2.4 Mutation

The mutation analysis [3] is widely used to verify

the adequacy of a test suite based on some specific

testing criteria. Given a Boolean expression B, a

derivation M is obtained by seeding faults into B. M is

called a mutant of B, and the process to obtain M from

B is called mutation. In this study, the mutation

technique is used to derive mutants of general form

Boolean expressions. The ten types of faults discussed

in Section 2.2 have been simulated by the mutation

technique. Note that in our study a derived mutant

contains only one single syntactic change when it is

compared with the original Boolean expression.

3. Patterns of the Undetected Faults

In this section, we analyze the characteristics of

faults/mutations that will escape from being detected

by a MUMCUT test suite.

3.1 Empirical studies

When applying the MUMCUT to a general form

Boolean expression GB, we need to transform GB into

a Boolean expression IB in IDNF, then the MUMCUT

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

3

is used to generate test suite from IB or its mutant IM
that is transformed from a mutant GM of GB. In this

paper, we refer to these two applications of MUMCUT

as forward MUMCUT and reverse MUMCUT, which

basically simulate the situations where test cases are

generated from a specification (that is, IB) or source

program (that is, IM), respectively.

Our experiments have reported that when the

MUMCUT is applied to ten types of fault in general

form Boolean expressions, the forward MUMCUT has

a mutation score of 99.4, while the reverse MUMCUT

has a mutation score of 97.9 [2]. There are totally 22

undetected mutants for the forward MUMCUT and 86

for the reverse MUMCUT, respectively. We have

reported the five kinds of patterns which describe the

characteristics of 55 undetected mutants in the reverse

MUMCUT [8]. We examine and summarize below the

characteristic of 108 undetected mutants, which will be

used as the basis of certainty analysis of detection

failure and extension to the MUMCUT.

3.2 Patterns of undetected mutations

For briefness and simplicity, we use the concept

of pattern to abstract the characteristics of an

undetected mutant. An undetected mutation pattern

describes the causes that result in the failure of

detection by the MUMCUT. An undetected mutation

pattern is also a function that defines the substantial

difference between the source and the target. Under the

circumstances of mutation, the source of an undetected

mutation pattern corresponds to an original Boolean

expression in IDNF, while the target corresponds to its

mutants in IDNF. The forward MUMCUT generates

test cases from the source, while the reverse

MUMCUT from the target.

For all undetected mutants in the forward

MUMCUT, we discover one common characteristic by

comparing the source and the target, namely, the

insertion of terms consisting of more than one literal.

Furthermore, for a large part of the undetected

mutation patterns, some Boolean variables occur at the

target while disappear at the source. Similarly, among

the undetected mutation patterns in the reverse

MUMCUT, one common characteristic is the omission

of terms consisting of more than one literal. For a large

part of them, some Boolean variables occur at the

source while disappear at the target.

We summarize several undetected mutation

patterns by examining all undetected mutants from

both the forward MUMCUT and the reverse

MUMCUT. We only outline these patterns in terms of

the forward MUMCUT. It is easy to derive their

representations for the reverse MUMCUT due to

symmetry. For example, a pattern “p:a b” in the

forward MUMCUT will be represented as “p:b a” in

the reverse MUMCUT; a test suite generated from a
will not detect b in the forward MUMCUT;

correspondingly, a test suite generated from a will not

detect b in the reverse MUMCUT. To address more

compact and substantial characteristics, we further

extract core patterns and their extensions. It is noted

that the occurrence of both core patterns and extension

patterns will result in the failure of detection by the

MUMCUT.

Pattern 1 Core Pattern: abc ababc + , and

Extension Patterns:

abcS ababcS + ;

abcS Sababc)(+ . Here, S is a null term or a

term without the occurrence of a, b or c.

Pattern 2 Core Pattern:

cab +)(bacabacbcab ++=++ and

Extension Patterns:

cSab + Sbacab)(++ ;

Scab)(+ Sbacab))((++ . Here, S is a null

term or a term without the occurrence of a, b or c.

Pattern 3 Core Pattern: bcacde + dabbcacde ++
and Extension Patterns:

bcacdeS + dabbcacdeS ++ ;

bcacde + Sdabbcacde ++ ;

Sbcacde)(+ Sdabbcacde)(++ . Here, S is a

null term or a term without the occurrence of a, b, c, d
and e.

Pattern 4 Core Pattern: acab + bcacbacab ++ and

Extension Pattern:

Sacab)(+ Sbcacbacab)(++ . Here, S is a null

term or a term without the occurrence of a, b or c.

Pattern 5 Core Pattern: ab bcab + and

Extension Patterns:

abS bcabS + ;

ab bcSab + ;

abS Sbcab)(+ . Here, S is a null term or a

term without the occurrence of a, b or c.

3.3 Undetected mutation patterns

Tables 1 and 2 report the distribution of

undetected faults in the forward MUMCUT and the

reverse MUMCUT, respectively.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

4

Table 1. The distribution of undetected mutation

patterns in the forward MUMCUT
Mutation

Type

P1 P2 P3 P4 P5 Total

ENF 0 0 0 0 0 0

LNF 0 2 0 0 5 7

TOF 0 0 0 1 0 1

TNF 2 0 0 0 0 2

LOF 1 0 0 0 1 2

LIF 0 0 0 0 1 1

LRF 0 1 0 0 2 3

ORF 0 1 0 0 0 1

POF 0 0 0 0 0 0

PIF 1 0 0 0 4 5

Total

 (%)

4

(18.2)

4

(18.2)

0

(0)

1

(4.5)

13

(59.1)

22

(100)

Table 2. The distribution of undetected mutation

patterns in the reverse MUMCUT
Mutation

Type

P1 P2 P3 P4 P5 Total

ENF 0 0 0 0 2 2

LNF 0 2 0 1 3 6

TOF 3 4 3 0 15 25

TNF 0 0 0 0 5 5

LOF 0 1 0 0 1 2

LIF 2 3 0 0 1 6

LRF 1 2 0 0 1 4

ORF 2 1 1 0 4 8

POF 0 0 0 0 0 0

PIF 3 2 0 2 21 28

Total

(%)

11

(12.8)

15

(17.4)

4

(4.7)

3

(3.5)

53

(61.6)

8 6

(100)

From Tables 1 and 2, single faults from general

form Boolean expressions may result in the occurrence

of various undetected mutation patterns. On the other

hand, our experimental results demonstrate the

omission of some undetected mutation patterns for

some mutation types. For example, no undetected LRF

mutation in the forward MUMCUT belongs to Pattern

1, and no undetected LOF mutation in the reverse

MUMCUT belongs to Pattern 1. Intuitively speaking,

for each type of faults in general form Boolean

expressions, there should be a possibility of occurrence

of these undetected mutation patterns.

From Tables 1 and 2, we discover that in both the

forward MUMCUT and the reverse MUMCUT, nearly

60% of the undetected mutants fall in Pattern 5; only a

very small percentage of the undetected mutants fall in

Patterns 3 and 4. The distribution of undetected

mutation pattern in our experiments provides us

information about on which aspects we should put

emphasis to analyze and enhance the MUMCUT.

4.Certainty Analysis of Detection Failures

We analyze below the reason why those faults or

mutations that satisfy the characteristics of one of five

patterns or their combination can escape from being

detected by a MUMCUT test suite. Further more, we

will concentrate our analysis on the core patterns of

undetected mutations individually. In the following,

we use ta to represent the TRUE assignment of

Boolean variable a, and fa for FALSE assignment.

There are 15 undetected mutations of Patten 1 in

our experiments. When the MUMCUT is used to

generate test cases from abc , the resulting test suite is

{ ftttftttfttt cbacbacbacba ,,, }. The outputs of

baabc + and abc are always the same with test cases

from the resulting test suite. If one test point tff cba is

appended to the test suite, the mutant can be killed.

The point tff cba however is included in neither UTP

nor NFP, so this is a fault that cannot be detected by a

MUMCUT test suite.

There are 19 undetected mutations of Patten 2 in

our experiments. Similarly, a MUMCUT test suite

{ fctbta , tcfbta , tctbfa , fctbfa , fcfbta } is

generated from cab + . When an extra point tff cba is

appended, the mutant can be killed. This extra point

tff cba is included in UTP, while not in the

MUMCUT test suite. We further discover that it is a

fault that may or may not be detected by a MUMCUT

test suite since the selection of point in the MUMCUT

is nondeterministic.

There are 4 undetected mutations of Pattern 3 in

our experiments. A MUMCUT test suite generated

from bcacde + does not include points

ffftt edcba and tfftt edcba . If either of these two

points is appended, the mutant can be killed. Since

both ffftt edcba and tfftt edcba are included in

neither UTP nor NFP, therefore it is a certain fault that

cannot be detected by a MUMCUT test suite.

There are 4 undetected mutants of Pattern 4 in

our experiments. A MUMCUT test suite

{ fftftftftftt cbacbacbacba ,,, , ttftff cbacba , } is

generated from acab + . Only when the test

point ttt cba is appended, can the mutant be killed.

Since ttt cba is included in neither UTP nor NFP, it is

also a certain fault that cannot be detected by a

MUMCUT test suite.

There are 66 undetected mutations of Pattern 5 in

our experiments. A MUMCUT test suite

{ ttba , ftba , tf ba } is generated from ab . With

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

5

ttba and ftba as inputs, two Boolean expressions

produce the same outputs. If tf ba is used as an input,

the output of bcab + depends on the value of c and

the output of ab is False. Therefore, this fault is also

uncertain for the MUMCUT strategy. Unlike Pattern 2,

this undetected mutation pattern is beyond the design

of the MUMCUT because the relevant Boolean

variables do not exist in the mutants. However, we

notice that this type of faults can result from one single

fault when general form Boolean expressions are

concerned. For example, we assume that an LRF

(replacing d with b) happens to the original Boolean

expression bdd)cb(a +++)(, a mutant

bd)bcb(a +++)(is obtained. When the mutant is

transformed to one in IDNF, namely bac + , Boolean

variable d has disappeared. Obviously, when the

reverse MUMCUT is applied, the detection of this

fault is similar to the core pattern discussed here.

5. Extensions to MUMCUT

In this section, we discuss how to extend a MUMCUT

test suite to detect those undetected mutations reported

in our experiments. We will firstly propose the

extension of test suite for undetected mutation pattern

individually, and then proposed a more general

enhancement to the MUMCUT.

5.1 Specific extensions for undetected mutation

patterns

 The characteristic of Pattern 1 lies in the omission

of one term consisting of two or more complementary

literals. Recall all existing IDNF-oriented fault-based

testing strategies divide the input space into four

disjoint sets, and NFP is designed to demonstrate the

effect of each literal in one term on the output. We can

further generalize the NFP to n-NFP, thus the False

Point Set is further classified into 1-NFP, 2-NFP, …,

n-NFP and RFP. 1-NFP here is equal to NFP

mentioned in Section 2.1. As an illustration, we define

2-NFP as follows.

2-NFP =
n

i jj
jjiFP

1 ,
,

21

21
=

, where

)}1|(|

))(/,/(|{

21

,,,,, 221121

jjTT

tttttFPFPttFP

i

jijijijiiijji

≠∧>∧=

∧∈=
.

})(|{ FtiTtiFP == .

)/,/(
2211 ,,,, jijijijii ttttFP is one Boolean expression in

IDNF B ’ derived from the original Boolean

expression in IDNF B through the following

replacements: the thj1 literal in the thi term in B is

replaced with its complementary, and the thj2 literal in

the thi term in B is replaced with its complementary.

Based on the n-NFP (for example, 2-NFP), we

extend MNFP in MUMCUT as follows: “Given each

term iT and ji,FP ,
21, jjiFP , the selected test points

should cover (1) all possible truth-values of variables

not occurring in ji,FP , and (2) all possible

combination of any two variables occurring in
21, jjiFP ”.

Still take “ abc baabc + ” as an example, test point

tff cba is included in the test suite of the extended

strategy, and this fault can be detected by it.

Pattern 2 is an uncertain undetected mutation

pattern for MUMCUT. The exact reason that a

MUMCUT test suite fails to detect such a fault pattern

lies in the MUMCUT’s nondeterministic selection of

UTP in MUTP. To detect this uncertain fault, a

feasible method is to increase the number of UTP

samples.

Pattern 5 cannot be detected by a MUMCUT test

suite because new Boolean variables are introduced.

This problem is outstanding when we apply

MUMCUT, which is designed to detect faults in

Boolean expressions in IDNF, to detect the faults in

general form Boolean expressions. To effectively

detect this type of fault, a test suite oTS generated from

an original Boolean expression should be extended to

contain the assignments to new Boolean variables. One

simplest and safest extension is described as “ for new

Boolean variables, an exhaustive test set nTS is

generated. The ultimate test suite is the combinational

concatenation of nTS and oTS ”. For example, a

MUMCUT test suite for ab is { ttba , ftba , tf ba }, and

the exhaustive test points for c are { fc , tc }, then an

extension test suite is { ttt cba , tft cba , ttf cba , ftt cba ,

fft cba , ftf cba }. Obviously, the test point ttf cba can

be used to kill this fault.

Pattern 3 cannot be detected because of the

omission of terms that consists of multiple coupling

literals occurring in other terms. Pattern 4 cannot be

detected because of the coupling changes in multiple

terms. Both Pattern 3 and Pattern 4 are certain

undetected faults for MUMCUT. Up to now, we

cannot figure out a specific extension to Patterns 3 and

4. Fortunately, there are only 8 such types of

undetected mutants from totally 4122 mutants in our

experiments.

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

6

5.2 A general extension to MUMCUT

We describe here a unified extension strategy for

test case generation for all undetected mutation

patterns. Given a Boolean specification B, we employ

the MUMCUT to generate a test set TS from the

equivalent BI in IDNF. To increase the fault detection

capacity (BI may contain one of the five undetected

mutation patterns or their combinations), we can

extend the test set TS using the following procedure:

1) Append a full-false point and a full-true point to

TS; and

2) If 2>x , then append x-2 test cases from the

remaining test cases to TS {
1ts , …, mts }, where

the number of an exhaustive test set for BI is
x2 (x is the number of Boolean variables in BI).

When one candidate it is chosen from the

remaining test cases {
1t ,…, nt }, it should

satisfy the condition

|))(|(|)(|
..1,..1..1

ts-tMaxts-t jk
mjiknk

ji
mj

MaxMax
=≠==

≥ , where

|t-t ji| is the number of different bits between

test cases it and jt .

 The intuition behind our extension is that those

test points that are largely different from the selected

ones should be selected for execution with a bigger

chance to detect faults. As a very preliminary study,

we experimented this extension to the current

MUMCUT for five core patterns of undetected

mutations. Experimental results show that the extended

MUMCUT test suite may detect all faults which satisfy

one of the five core patterns of undetected mutations.

We illustrate this extension by Pattern 1. We apply the

forward MUMCUT to generate a test suite

{ ftttftttfttt cbacbacbacba ,,, } from abc , and the

extended MUMCUT test suite is

{ ttt cba ftttftttf cbacbacba ,,, , fff cba , tff cba }. The

latter can detect the fault while the former cannot. It is

noted that for Pattern 5, we need to combine this

general extension strategy with specific extensions

discussed as above.

6. Conclusion

We have studied the extension of the MUMCUT,

which is originally designed to detect several common

single faults in Boolean expressions that are assumed

to be in IDNF, for one single fault in general form

Boolean expressions. We have conducted a family of

experiments to examine the issues arising when the

MUMCUT is applied to test general form Boolean

expressions. We have identified five undetected

mutation patterns by comparing all undetected mutants

in the forward/reverse MUMCUT experiments. We

further analyze why a MUMCUT test suite fails to

detect those faults that satisfy these undetected

mutation patterns, and propose specific and general

extensions to the current MUMCUT to detect those

undetected faults.

In future work, we need to conduct the empirical

evaluation on the extension to MUMCUT discussed in

this paper using other Boolean expression samples.

7. Acknowledgements
This research is partially supported by the ARC

Discovery Grant of Project No. DP0345147.

8. References

[1] T.Y. Chen, M.F. Lau. Test case selection strategies based

on Boolean Specification, Software Testing, Verification and

Reliability, Vol. 11,No.3, 2001, pp165-180

[2] T.Y. Chen, M.F. Lau, C.A. Sun, K.Y. Sim, On detecting

faults for Boolean Expressions, submitted for publication,

2006

[3] R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test

data selection: Help for the practicing programmer,

Computer, Vol. 11, No.4, 1978, pp34-41

[4] K. Foster, Sensitive test data for logical expressions,

SIGSOFT Software Engineering Notes, Vol. 9, No.2, 1984,

pp120-125

[5] K. R. Kuhn, Fault Classes and Error Detection Capability

of Specification-based Testing, ACM Transactions on

Software Engineering and Methodology, vol.8, No.4,

October 1999 pp411-424

[6] M.F. Lau and Y. T. Yu, An Extended Fault Class

Hierarchy for Specification-Based Testing, ACM

Transaction on Software Engineering and Methodology, Vol.

14, No.3, 2005, pp247-276

[7] C.A. Sun and K.Y. Sim, An FSM-based parameterized

generator for Boolean expressions, Proceedings of ICENCO-

2004, Dec. 27-30 2004, Cairo, Egypt, pp119-126

[8] C.A. Sun and K.Y. Sim, T.H. Tse, T.Y. Chen, An

empirical evaluation and analysis of the fault-detection

capability of MUMCUT for general Boolean expressions,

Proceedings of International Computer Symposium 2004,

Dec.14-17, Taipei, Taiwan, pp926-932

[9] K.C. Tai, M.A.Vouk, A. Paradkar, P.Lu, Evaluation of a

Predicate –Based Software Testing Strategy. IBM System

Journal, Vol.33, no.3, Oct. 1994, pp445-457

[10] E. Weyuker, T. Goradia, A. Singh, Automatically

generating test data from a Boolean specification, IEEE

Transactions on Software Engineering, Vol. 20, No.5, 1994

pp353-363

[11]Y.T. Yu, M.F. Lau, and T.Y. Chen. Automatic

generation of test cases from Boolean specifications using

the MUMCUT strategy, Journal of Systems and Software,

Vol. 79, No.6, 2006, pp820-840

Proceedings of The Sixth IEEE International Conference on Computer and Information Technology (CIT'06)
0-7695-2687-X/06 $20.00 © 2006

Authorized licensed use limited to: SWINBURNE UNIV OF TECHNOLOGY. Downloaded on March 24,2010 at 01:12:22 EDT from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

